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Abstract. We present entropy stable schemes for the two-dimensiariat Equations on
unstructured grids. We develop a novel energy conservatiieme that is very simple to im-
plement, is computationally cheap and efficient. To allavafoorrect dissipation of entropy in
the vicinity of shocks, a novel numerical diffusion operaticthe Roe type is designed. The en-
tropy conservative scheme, together with this diffusiceraior, gives an entropy stable scheme
for Euler equations on unstructured grids. Numerical expents are presented to demon-
strate the robustness of the proposed schemes. Numerpailieents include the Sod shock
tube problem, vortex advection and flow past a NACAO0012i&irfo
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1 INTRODUCTION

We deal with systems of conservation laws in several spacertiions. For simplicity of
exposition, we consider the two-dimensional case in thiepal he generic form of systems of
conservation laws in two space dimensions is

U, +£,(U). + £,(U), =0 1)

with U : Q x R, — R™ for someQ2 C R?. Definingf(U) = (f;(U), £,(U)), we say that
[ is hyperbolicif the matrix - (f(U) - n) hasm real eigenvalues for all nonzero€ R?. A
prototypical example fdil1 are the Euler equations of gasadyos:

p é)u pv
_ | pu | et +p _ puv
u=| "0 mo=| 0T Ru=| BT (2)
pE (PE + p)u (PE +p)v

Let p,u,v,p, E,c and M denote the density, velocity components, pressure, iatemergy,
speed of sound and Mach number. For a perfect gas, the peetiseispeed of sound and the
Mach number are given by

p=(7—1)(pE—%p(u2+v2)), CZ\/ZPP, Mz#- 3)

We denotar = (u, v).

1.1 Entropy framework

The solutions of1ll may develop discontinuities in finite timleen even the initial data is
smooth. Hence, solutions(df 1 are sought in the sense oftisons. Additional admissibility
criteria need to be imposed to single out unique solutionsh&riteria, callesgntropy condi-
tions rely on the existence of a convex functigrand functionsy;, ¢; such that the following
compatibility conditions hold:

¢(U)" =7 (U)'£(U0),  ¢(U)" =7(U) f(U). (4)

It is straightforward to check usiig 4 thethoothsolutions ofl satisfy an additional conserva-
tion law, the entropy identity

n(U): + @(U): + ¢2(U), = 0. (S)

However, entropy needs to be dissipated at shocks. Herecenthopy identityls is replaced by
an entropy inequality,

that holds in the sense of distributions. The vedfo »/(U) is termed as the vector ehtropy
variables The entropy inequalitlyl6 is integrated in space to yieldsability estimate

& [ 0Oy, 0)dzdy <0 )

Given the strict convexity of the entropy function, the eply framework throughl 7 provides an
a priori L? stability estimate for the mult-dimensional systém 1.
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We illustrate the entropy framework for the Euler equati@n®efine the standard logarith-
mic entropys := log(p) — vlog(p). Then the entropy function and entropy fluxes for the Euler
equations are given by

pUS

The entropy variables are
-5 lu> pu pv i
y=1 p» p p p

1.1.1 Symmetrization:

The results of Godunov and Mock show that a hyperbolic syBiesrsymmetrizable if and
only if it has an entropy framework. A particularly revegiform of this symmetrization is
due to Barth[[l]. The key to this symmetrized form is a theoddrfi] showing that for every
nonzera € R? there exist suitably scaled matrix of eigenvectBysof the matrix-% (f(U) n)
such that

RaR) = Uy, (10)

with Uy = U’(V) being the change-of-variables matrix from the conserveidbkesU to the
entropy variabled/. This identity is independent of the directian thus providing a natural
scaling for the eigenvectors. Dendtg = R,,, with e, being the unit vector in directiok, and
let A, be the corresponding diagonal matrix of eigenvalues. Ukthgve formally obtain

U, +£,(U), + £,(U), = U, +f(U)U, +£5,(U)U,,
= UvV,+ RiIAMR UV, + RyAyR; Uy,
UvV, + RiIMR]V, + RyAyR) V.

Asn is a convex functionUy; is a symmetric positive definite matrix. Clearly the coeéiti
matricesR, AR, for k = 1,2 are symmetric, implying that the conservation @w 1 has the
symmetrized form

UvV, + RiAMR] V, + RyAyR)V, = 0. (11)

For the Euler equations with the aforementioned entropygtfan, the change of variables

matrix is given by
p pu’ E
Uy = | pu puu' +pl pHu

C2
E pHu'  pH? — 7—}1

where the specific enthalpy i$ = 70_21 + % The resulting scaled eigenvectors are

-1 2 2 T
Th = 7/}(7 ) <n17 uny, vny, 7@ i )nl) ,

v 2
R ey R )
! g VT VAT v-1 ’
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rd = 2£ (1, w+ cny, v+ cng, H+ c(ung + UTLQ))T )
Y

rd = /2£ (1, u—cny, v —cng, H — c(uny + vng))T . (12)
Y

The diagonal matrix of eigenvalues is given by

A, = diag(ung 4+ vng, uny + vng, uny + vng + ¢, ung + vng — c). (13)

1.2 Aims and scope of the paper.

Numerical methods to discretize systems of conservatws,lauch as the Euler equations,
have extensively developed in the last few decades. Ofgpdatiinterest, are the finite volume
methods|[5] and ]6], where the computational domains isdeiiinto control volumes and a
discrete (integral) version of the conservation law is isgsobon each control volume. The
resulting numerical fluxes are then computed by using exaapproximate solutions of the
Riemann problem (in the normal direction) at each contréime interface.

It is highly desirable that a numerical scheme respectsritregy balance of the underlying
PDEs. In particular, entropy should be conserved if thetgnis to the conservation law are
smooth and should be dissipated at shocks. However, sthndarerical schemes, based on the
finite volume framework, may not respect this balance. Taesklthis, Tadmoi [8] devised a
framework for constructing finite difference approximatdor systems of conservation laws in
one space dimensions. This framework is based on two ingmelii) an entropy conservative
flux function and ii) numerical diffusion operators whiclssipate entropy at shocks. The exis-
tence of entropy conservative fluxes was also shownlin [8]easet of explicit solutions were
obtained in[[9]. More recent papers suchlas [7] for the Euleragons and 2] for the shallow
water equations. These explicit fluxes increase the cortipo#d efficiency of entropy conser-
vative schemes. Arbitrarily high-order entropy stabletérdifference schemes are designed in
[3].

The main aim of the current paper is to extend the frameworkaoimor [8] to discretize
systems of conservation laws in several space dimensionsnstructured grids. To this end,
we extend the notion of entropy conservative schemes tougtsted grids in two space dimen-
sions as well as introduce suitable numerical diffusiorrafmes. Explicit formulas for the Euler
equations are provided. Numerical experiments (agairh®Euler equations) are presented to
illustrate the robustness and efficiency of the proposedrael.

2 Discretization
2.1 Mesh description

We assume thaf2 is a bounded polyhedral domain &2. We introduce a conforming
triangulation7;, in R?, whereh is the maximal length of the edgesT). For the primary grid
(see Figuré&ll), the nodes are the verticgsndexed ovei € V, of the trianglesk” € 7,. The
finite volume cells are the barycentric cell$, obtained by joining the midpoint¥/;; of the
sides originating at node; to the centroids;; of the triangles of7;, which meet at; (see
Figurel2).

In the sequel we use the following notation.

Notation 2.1 Leta;, a;, a, be the three nodes defining a triandlee 7;,. Then
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e a;, Iistheit" vertex

e M;; is the midpoint of side;a;

e N, isthe set of vertices that are neighbors of nage

e |N;| isthe number of neighboring verticesdp

e G (j=1,...,|MV)|) is the centroid of a triangle of which; is a vertex
e (C; isthe barycentric cell constructed around

e ¢;; = 0C; NIC; isthe common face of neighboring cellsandC;

e n; = (n;,,n;,) Isthe outward normal vector t0C; (see FiguréH)

e nj;,n?; are the normals of the two components.gf(see FiguréB)

e U= U(a;t") isthe nodal cell average values at tirhe- ¢".

The union of all the barycentric cells constitutes a panitof the computational domain,:

o=c
=1
wherenv is the number of vertices of the original finite element tgalation7,. For complete
details of the domain of computation for the NACA0012 airfoithe 2D see Figurgl 5.
Let

' 1 2
801-080]-

be the unit normal on the facg; = G,;G; ;41 pointing out of the control volume’;. The
normal vectorsy;; andn;; are depicted in Figufg 3 and; in Figure[3. Note that we have

JEN;
We denote the average and differencd&oficross the edge; as

— 1
Uij = 5 (Uz + U]) ) [[U]]z] = Uj - Ui’
and remark that;; = U;; and[U],; = —[U];.

Figure 1: Primary grid
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2.2 Semi-discrete finite volume scheme:

The space discretization method considered here is a vaztdrred finite volume formula-
tion. A conservative and consistant finite volume approxiomeof([d is written
auy 1

_|_

F(U.: . n.) =0. 1
8t ‘Cz‘ Z (UzananU) 0 (5)

JEK ()
The numerical flud;; = F (U;, U;, n;;) is assumed to have the following properties:

(i) Consistency:
F(U,Un)=f(U) n

(i) Conservation:

F —F

ij — Jt

forall j € ;.

3 Entropy conservative schemes

We aim to design a numerical flux such that the resulting nicakescheméZ15 igntropy
conservative.e, it satisfies a discrete version of the entropy ideflitf e concept of entropy
conservative schemes for systems of conservation lawsnirsiuced by Tadmor iri_[8] for
Cartesian meshes. In this section we extend the notion obmniconservative schemes to
unstructured meshes.

Definition 3.1 A numerical flud,; = F(U,, U;, n;;) is entropy conservativiéit is of the form
F;; = Fjn;; + F;;n?; and the components satisfy the relations

[V],FL =", k=12, (16)
where, (U) = V(U) £, (U) — ¢:(U) denotes the entropy potential.

Theorem 3.2 Let F be an entropy conservative flux. Then the approximate soisity; com-
puted by the finite volume schemé 15 with numericaliisatisfies the discrete entropy identity

d 1

3> Qij=0 (17)

JEN;

Figure 2: Barycentric cells around nodgsa;
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Figure 4: Part of a boundary @f;, e;; = 9C; N dC; and the normal vecta,;

with numerical entropy flux
2
k(N7 k Tk
- ];n] (Vi Fl —uF,). (18)

Proof. Multiplying 3 by the entropy variable¥;, we get

d 1 &2 .
Sn(U) = =Y S b VIE
i P =t A
2
_ k (X7 ok k
- Zm 12 (VR - VI
je

1
2
= 22: g (VZTJFZ N %[w I )

JEN; |

= - e (VIR ).

JEN; |Cl| k=1

where we have used the iden{iiyl 14 and adBigdy, 37, 1o yni91 = 0.

We note that the conditionJL6 provides a single algebralamqml for m unknowns. In
general, it is not clear whether a solution[of 16 exists. lenmnore, the solutions ¢fL6 will
not be unique except for scalar equations. In [8], Tadmowsldicthe existence of at least one
solution of L& for any system of conservation laws. Exphbalutions were constructed inl [9].
However, the entropy conservative fluxesiaf [9] are companatly expensive; se€l[2]. Instead,
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Figure 5: NACAO0012 airfoil, Primary grid and barycentridlc€;

we follow recent papers [Z] 7] to obtain algebraically simphd computational inexpensive
solution ofLI6. For concreteness we consider the Euler emsaof gas dynamidd 2.
Denote by~ the so-called Roe parameter vector

z=/°
p
It is readily verified that
Zy Zy Zs
P 144, p Z1 ) Uu Z1 ) v Z1 ’

BT~

mp = pu = Z2Z4, mo = pU = Z3Z4

Denoting bys = log(p) — v log(p) the standard logarithmic entropy, we have

(Zil_v))
s=m |2 ), )
ZflJr'y)

The entropy variables are

=S _ mitmd

. —Z1Z48
= - 1

2 2
pow| Sop g4+ In(Zy) + ($2)In Z, - Zta
V = W _ AVA: ’
2 71 Zs
_er _212
p

the entropy fluxes are

ql(U) _ —m15 _ —Z2Z4S
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and the entropy potentials are
Y1 (U) = my, P2 (U) = mo.

Upon solvindIb we get the entropy conservative fluxes

7 In
! 222
~% Zy+FY1 7
~ F _ 21
F, = F‘i’ = T2 23710
7
~411 ol Fl+lz F24Z3F3
Fl = z 2 3
277
and _—
n
Fl Z3Z;
T2 ZyFy
~ F2 _ Z
F, = ]_7“3 = Zat F) Zs
2 7
4 L F1+1Z F24Z3F3
F2 Y— 2 3

271

See|[T] for further details.

4 Entropy stable schemes for Euler equations
4.1 Numerical diffusion operators

The entropy conservative schemes lead to unphysical aseils near shocks. We need to
add numerical diffusion to eliminate these oscillationlldwing the procedure of [2], we
consider numerical flux functions

~ 1

g

Here,F is an entropy conservative flux afidl is any symmetric positive definite matrix with

D,; = D;;. The fluxF;; is consistent becaudé, = U, implies thatF;; = f‘w 0 = f(U;) n,j,

and it is conservative becauBg, = F;; — 1D, (—[[V]] Aj) =— (f‘ - iD; [[V]]”) =—F,;.
The scheme with numerical flix119 is entropy stable by th.wimlhg Iemma

Lemma 4.1 Let the numerical flux in the finite volume schdmle 15 be definpE@bThen the
approximate solution®J; computed by the scheind 15 satisfy the discrete entropyatigqu

d
GU) + ¥ 2y <0 (20)

JEN;

with numerical entropy flug) given by

Q QU_ V D [[V]]ij’
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whereQ is defined ifizII8. Summing ovee V), we obtain the entropy bound
Z n(U (21)
ZEV
Poof Multiplying the finite volume formulatiohZ15 by; we get
d

~ 1
dtﬂ(U) ]%\:[ |C| (Vz J Vz J[[V]]z]
_-|— 1 T
= = ZN |C| (sz Y ( ij QHVHU) D;; [[V]]zj)
JE
1 1
_ 1 [V Dy[V]
4JGZN¢ CZ‘ 7 !
1
= —Qi'a
JEN; |Cl| ’
thus provind2ZD.

4.2 Specifying the numerical diffusion matrix.

Following [2,[3], we choose the following numerical diffosi matrix:
Dij = Rnij |Anij |Rl—’lr” . (22)

Here,A, and R, are the matrix of eigenvalues and eigenvectors as defirfdd imHe matrices
can be evaluated at the average staje

5 Numerical experiments

5.1 Vortex advection

We start testing the scheme on a smooth test case for theitmendional Euler equations.
This test case involves long time simulation. The initiaiedia set in terms of velocity andv,
the temperatur@ = % and entropy = log p — v log p:

u= 1= (=)o), v=1-(—aolr), 6=1- Lo’

wherer = \/(:c —z.)? + (y — y.)? with (z., y.) being the initial center of the vortex, and

o(r) = ee”‘(l_T2), r=_
TC

We set the free parametets= >, a = 3, 7. = 1 and(z.,y.) = (5,5). The exact solution of
this initial value problem is smpljd(:c, y, t) = U(x — t,y — t,0). In other words, the initial
vortex centered &tz.., y.) is advected diagonally with a velocity of 1 in theandy-directions.
The computational domain and initial data is shown in FidlirgVe compute up t@' = 30 on
a mesh with 40836 vertices. FiguidBl7,8 show the computesitgleat the timet = 30 using
the entropy conservative scheme and the standard Roe scheguee[® shows that there is
a significant gain in accuracy using the entropy conserwatcheme as compared to the Roe
scheme.

10
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density

1.000e+00

Figure 6: Computational domain with initial data, with gicin z-direction

— density
< 1.019e+0
— 8.876e-0.
= 7.565€-0

6.253e-0
4.942e-01F

Figure 7: Entropy conservative schematt = 30 with slices in z-direction.

— density

1.019e+0(
= 8.876e-0.
7.565e-0:

6.253e-0
4.942e-01"

Figure 8: Roe schemeatt = 30 with slices in z-direction.

5.2 Sod shock tube in two dimensions

We consider the Euler Equations in the computational dorfiaia [0, 1] x [0,0.1] with
Riemann initial data

(p,mi,mo, Diesr = (1,0,0,2.5) 0<x<05
(0,1, M2, Drigne. = (0.125,0,0,0.25) 0.5 < < 1.

The initial discontinuity breaks into a left-going rarefian wave, a right-going shock and a
right-going contact discontinuity. The computed solutigth the entropy conservative scheme
attimeT = 1.4 on a mesh of 20136 points, shown in Figurek 10[@md 11. The camhgolution

11
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[ exactsolutjon

density

5 10 15 20
X

1.2 NiTopy CYIISeTvative schene

density

0.6

0.4
40 45 50 55
X

Figure 9: A one-dimensional cut for the vortex advectiongbem/ Entropy conservative scheme vs Roe scheme,
p att = 30. Exact solution in red line.

nsity

0 0.2 0.4 0.6 0.8 1

Figure 10: Density for the 2-D Sod shock tube problem. Entmmservative scheme.

with this scheme has significant oscillations. This is toeztpd as the scheme preserves the en-
tropy (see figur€213), whereas the entropy of the exact sollitas to be dissipated at the shock
wave. The failure to dissipative this entropy results inltstons at the mesh scale. To remove
these oscillations, we use the entropy stable scheme gmaeia the previous section. Now,
the entropy is dissipated as shown in figlicé 14. Furtherntbeescheme resolves the shock
wave, the contact discontinuity and the rarefaction wawbaeut any spurious oscillations, see
Figure[I2. A comparison with the standard Roe scheme is a®orsin figureIP. The total
entropy_.cy |Ci|n(U); versus time is shown in Figurgs]13 14.

5

1.

xvelocity

0

-0.5

X

Figure 11: Velocity for the 2-D Sod shock tube problem. Epgroonservative scheme.
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density

density

1.000e-+0 1.000e+00y
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Figure 12: Solutions for the 2-D Sod shock tube problem cdegpwith the entropy stable scheme and the Roe
scheme.

Total entropy

-0.0038 T T
"fort.80"

- i
0.00381 .

-0.00382

-0.00383 \\
-0.00384 ‘\\
-0.00385 “\\

-0.00386
0 0.02 004 0.06 008 01 012 014
time

Total entropy

Figure 13: Total entropy vs. time, (Entropy conservatigesoe)

-0.0038
>
o
S -0.00385
2
(0]
8
2 .0.0039

-0.00395

0 0.05 0.1 0.15
time

Figure 14: Total entropy vs. time, (Entropy stable cons@rgacheme)
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A:yi
P o Ay

Figure 15: Adapted mesh

5.3 Simulation of transonic flows around a NACA 0012 airofoil

We consider a transonic flow around a NACA0012 at angle otktta = 1° and Mach
number at infinityM,, = 0.85. We have selected this problem since it is a quite classiwhl a
significant test problem for Euler solvefs [4]. Figliré 15whdhe final adapted triangulation
near the profile used to solve the test problem. The meshiosritd930 points. Figurds1l6,
[I4 show the pressure and density lines for the entropy stableme and Roe scheme. We can
observe the similar shocks locations obtained with the ohemes implying a small difference
in pressure distributions shown in Figlird 18.

densit
Pressure y

1.609€+00) 14l4ep01
1.321¢+00) 1.204e+0(
1.0346+00) 9.934¢-01
7.463e-01 7.833e-01

4.589¢-01! 5.731e-01"

Figure 16: Iso-pressure and density lines,( entropy statileme)

density
PRESS|ON

141480
1.587¢+00; 120540
1.2976400) 9.934¢:01)
1.008e+00|

e 7.833¢-01

4.285€-01! 5.731e-01"

Figure 17: Iso-pressure and density lines, (Roe scheme)
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B ==
g
{5 oD

Cp

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 18: Pressure distribution (entropy stable schemBw&e scheme)

6 Conclusion

We have presented in this paper a new formulation of entropgervative and entropy stable
schemes on unstructured grids for the stable numericatisolaf Euler equations modelling
transonic, supersonic and hypersonic flows. With these odstlve can simulate 3-D flows
around complex geometries such as complete aircraft.
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